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Video Quality Pooling Adaptive to
Perceptual Distortion Severity
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and Alan Conrad Bovik, Fellow, IEEE

Abstract— It is generally recognized that severe video distor-
tions that are transient in space and/or time have a large effect
on overall perceived video quality. In order to understand this
phenomena, we study the distribution of spatio-temporally local
quality scores obtained from several video quality assessment
(VQA) algorithms on videos suffering from compression and
lossy transmission over communication channels. We propose
a content adaptive spatial and temporal pooling strategy based
on the observed distribution. Our method adaptively emphasizes
“worst” scores along both the spatial and temporal dimensions of
a video sequence and also considers the perceptual effect of large-
area cohesive motion flow such as egomotion. We demonstrate
the efficacy of the method by testing it using three different
VQA algorithms on the LIVE Video Quality database and the
EPFL-PoliMI video quality database.

Index Terms— Egomotion, perceptually influential distortions,
pooling, video quality assessment, VQPooling.

I. INTRODUCTION

V IDEO quality assessment (VQA) deals with predicting
the perceptual quality of a video, i.e., the quality of

a video as judged by an average human observer. A large
body of work on VQA exists in the literature and much of
the work has focused on full reference VQA [1]– [3]. Full
reference VQA algorithms estimate the quality of a test video,
assuming the availability of a pristine reference video that
was used to create the test video. Most full reference VQA
algorithms estimate the quality of a video over local spatio-
temporal regions [4]–[6]. The sizes of the regions of support
used by different algorithms vary along both the spatial and
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temporal dimensions. Some VQA algorithms operate on a
frame-by-frame basis, while others consider several frames
of the video sequence when predicting local, spatio-temporal
quality [1]– [13]. These spatio-temporal local quality indices
are then combined into a single global quality index of the
entire video, which predicts an average human observers’
quality opinion of the video.

There is no perfect understanding of the way that human
observers combine local spatio-temporal local impressions of
video quality to obtain judgments of overall video quality
although several researchers have studied this question [1]. The
simple strategy of taking the average, or sample mean, of the
local quality indices over both spatial and temporal coordinates
to obtain a single global quality index has been employed in
the construction of many VQA algorithms [2]– [7]. Several
other models have also been proposed regarding how spatial
and temporal local quality indices should be combined into a
single global quality index [8]–[10].

Recently, several studies have focused on developing tem-
poral pooling mechanisms that combine per-frame quality
indices into an overall quality index. The approach of [11]
considers both short-term and long-term temporal variations
of spatial distortions using a wavelet-based quality assessment
(WQA) model to develop temporal pooling mechanisms [12].
Forgiveness and negative peak duration neglect effects, where
overall ratings were greatly influenced by the single most
severe event while the duration of the event was neglected,
were reported using data gathered using a single stimulus
continuous quality evaluation (SSCQE) paradigm in [14], [15].
The degree of smoothness of subjective time-varying quality
scores was observed and modeled in [16]. A hysteresis effect
on the subjective judgment of video quality was observed in
a recent study of time-varying video quality [17]. Temporal
pooling of quality scores of networked video in packet loss
situations was studied by the authors of [18], who determined
that perceived temporal quality degradations are predomi-
nately determined by the duration over which each frame is
displayed.

In [19]– [22], a foveal peak signal-to-noise ratio (FPSNR)
used known or predicted fixation locations, along with a spatial
weighting mechanism to predict visual quality. However, pre-
dicting human fixations remains a difficult and unsolved prob-
lem. More recently, the authors of [23] defined an attention
map encapsulating various factors such as color, orientation,
motion, etc. when combining local quality scores. After sorting
the attention map values in descending order, twenty percent of
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Fig. 1. Typical distribution of spatio-temporal video quality. (a) 81st frame of the Pedestrian Area 16 (pa16) sequence in the LIVE Video Quality database
distorted by MPEG-2 compression. (b) Zoomed-in view of (a), showing a region suffering from severe encoding distortions (right) side-by side with the
reference region (left). (c) Quality index map obtained by SSIM expressing local spatial quality at each pixel. (d) Curve showing the SSIM values in (c),
sorted in ascending order.

the blocks having the highest attention map values are selected
as candidates for spatio-temporal pooling.

It has been hypothesized that the worst local quality scores
(both spatial and temporal) affect the overall subjective percep-
tion of quality more significantly than do the regions of good
quality [5]–[28]. This observation was used to devise a pooling
mechanism that sorts and weights a fixed percentile of poor
quality scores higher than the remaining scores [5]. Percentile
pooling using the lowest p% of quality scores to predict the
final score was also studied in [24] as a means of emphasizing
the stronger influence of more annoying, lower quality regions
of still images. The mean time between failures (MTBF),
representing how often noticeable visual errors are observed,
was used as an indicator of subjective quality perception in
[27]. Machine learning methods were explored to determine
the impact of spatial and temporal factors as well as their
interaction on overall video quality in [28].

We propose a more comprehensive spatial and temporal
pooling model that is based on the distributions of local spatio-
temporal quality scores from objective VQA algorithms and
that relies on both perceptual and behavioral models of distor-
tion perception. Our model adapts to the video content, and
parameters used in the spatio-temporal pooling are determined
for each video sequence based on the distribution of the spatio-
temporal quality scores and the presence of large coherent

motion (such as egomotion) in the video. The distribution of
quality scores in a video frame can vary considerably, and can
significantly impact human judgments of overall video quality.
We hypothesize that it is essential to adaptively extract the
scores and weights that are used for pooling by systematically
considering the distribution of the local spatio-temporal quality
scores. We also observe that the distribution of local spatio-
temporal quality scores are affected by the presence or absence
of large, cohesive motion regions in a video frame and
incorporate this effect into our pooling strategy. Such motion
can arise from egomotion, i.e., optical flow or motion fields
induced by camera motion.

We evaluate the proposed approach, which we dub Video
Quality Pooling (VQPooling), on quality maps delivered by
different VQA algorithms on the distorted videos in the
Laboratory for Image and Video Engineering (LIVE) Video
Quality Database [29] and the EPFL-PoliMI video qual-
ity database [30]. The results show clear improvement in
the performance of these algorithms as compared to tra-
ditional mean-based or percentile-based pooling methods.
The work reported here builds on our preliminary work
in [32]. We perform a rigorous performance evaluation of
VQPooling on additional VQ databases and also perform
a statistical performance analysis against traditional pooling
methods [32].
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Fig. 2. Comparison of the distribution of local spatio-temporal quality scores for different distortion types. (a) Compression distortion only. (b) Compression
and distortions due to errors in communication channel. (c) Curve showing the local spatio-temporal SSIM scores of (a) and (b) sorted in ascending order.

II. SPATIO-TEMPORAL CHARACTERISTICS OF

VIDEO DISTORTION

A. Distribution of Spatio-Temporal Video Quality

Video compression and lossy transmission processes do not
cause uniform distortions over a video frame and instead,
cause non-uniform distortions that vary in the level of percep-
tual annoyance they cause over space and time. In particular,
severe and highly annoying distortions that occur locally in
space or time heavily influence an observers judgment of
quality [14], [5]. As depicted in Fig. 1(a), video frames can
be viewed as being composed of large areas of smooth,
low-frequency spatial variations, broken by sharp edges and
textures occurring between. Natural video frames exhibit this
property, which forms the basis of various natural scene
statistics models. Indeed, the reduced sensitivity of humans
to local high frequencies is used in video compression. High
spatial frequency coefficients are more severely quantized than
low frequency coefficients in typical video coding schemes
such as the MPEG standards. Hence, encoding distortions such
as blur and loss of detail are often more severe in such regions
of high spatial activity, rather than in flat regions [31], as
shown in Fig. 1(b) and (c). Further, certain distortions such
as blocking tend to occur uniformly throughout a frame of
a video. However, the perceptual visibility of blocking distor-
tions varies based on scene content. Blocking is more visible in
smooth regions, while heavy spatial activity can mask blocking
artifacts, rendering them less visible or annoying [33].

The phenomenon described above applies to the spatial
distribution of quality scores in a single intra-coded frame
of the distorted video. A similar reasoning is applied to
predictively coded video frames due to the characteristics
of natural videos and natural video distortions along the
temporal domain. Along the temporal dimension there is a
high correlation between neighboring frames. Typical video
compression algorithms utilize motion compensated block dif-
ferences across frames to reduce temporal correlations, thereby
enhancing compressibility. The prediction errors over smooth
and static regions of the video is often small. However, large
prediction errors are produced around the borders of moving
objects, often resulting in local regions exhibiting severe
distortion [31], [34]. Thus, predicted frames also suffer from
small areas that are severely distorted, interspersed among
larger areas of better quality.

We performed experiments using SSIM as an indicator of
spatio-temporally local quality and observed the distributions
of these scores using distorted videos in the LIVE Video
Quality Database. We found that if the SSIM scores for a
frame of the video are sorted in rank order, the sorted quality
scores tend to follow a curve as depicted in Fig. 1(d) that
saturates at higher quality scores. This curve shape contains
a saturating portion that arises from regions suffering from
very low degrees of quality degradation. The steeply increasing
portion of the curve corresponds to regions of severe quality
degradation.

The distribution of objective quality scores in video frames
that suffer from distortions introduced by lossy transmis-
sion of video depends on the nature of the lossy channel.
Videos are compressed by video coding algorithms before
being transmitted over networks. Channel distortions typically
produce much more significant distortions than do compres-
sion distortions [35], [36]. We found that videos suffering
from distortion due to network errors also exhibit a similar
distribution as compression distortions. Further, we found that
severe quality degradations were introduced by the channel
errors resulting in a steeper slope of the sorted quality scores.
Fig. 2(a) and (b) illustrate this effect for identically compressed
video sequences. However, the video in Fig. 2(b) additionally
suffers from channel distortion, resulting in a steeper slope
due to more severe quality degradation.

We hypothesize that a video sequence that has undergone
distortion through destructive processes such as compression
and lossy network transmission will typically produce a dis-
tribution of objective quality scores in a frame similar to
the shape in Fig. 1. In our experiments, we have observed
this to be true on every video in the LIVE Video Quality
Database, the VQEG FRTV Phase I database and the EPFL
PoliMI database. We have also observed similar distributions
of objective quality scores using a variety of objective VQA
algorithms such as MSE, SSIM and MOVIE.

However, we have not yet been able to find any consistent
temporal models that can account for the frame level objective
quality scores obtained by spatial pooling. We believe that
this follows since temporal video quality can fluctuate con-
siderably with video content, error propagation due to motion
compensated video encoding and channel induced distortions
[37], [38]. However, temporal regions of severe quality degra-
dation do impact visual quality [11], [14], [26] and we account
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Fig. 3. Illustration of weakness of the sample mean as a spatial pooling method on two distorted versions of the Mobile & Calendar sequence from the
LIVE Video Quality database. (a) 188th frame of mc2 (mean SSIM = 0.8495, mean MSE = 119.92, and mean spatial MOVIE = 0.9603). (b) 188th frame
of mc12 (mean SSIM = 0.8339, mean MSE = 123.41, and mean spatial MOVIE = 0.9584).

for this effect by clustering temporal video quality scores into
regions of high and low quality.

We utilize these observations to develop an approach for
pooling local spatial and temporal quality indices into a single
quality index in Section II-B.

B. Proposed Approach

We have discussed the hypothesis that the most severe
impairments substantially affect the overall subjective percep-
tion of quality. This is nicely illustrated in Fig. 3, where
the video frame in Fig. 3(a) suffers from severe localized
degradations, while the distribution of distortions in Fig. 3(b)
is more uniform. However, even though the overall quality of
Fig. 3(a) is worse than Fig. 3(b), the quality scores delivered
by SSIM, MSE and MOVIE on the distorted video depicted
in Fig. 3(b) are worse than those on the distorted video
in Fig. 3(a) using spatial mean pooling. The problem of
extracting such influential “worst quality” scores in a content
adaptive manner has not been adequately studied. We explain
a natural approach to accomplish this.

As discussed in Section II-A, video quality scores sorted
in ascending order typically exhibit a curve with a saturating
tendency, with lower quality scores occurring in the steeply
increasing region of the curve and higher quality scores
occurring in the saturated region. Thus, we may view the
problem of extracting perceptually influential poor quality
regions of the 2-dimensional quality map corresponding to
severe distortions as a classification problem on the saturating
curve. In other words, the goal is to separate the increasing
and saturating regions of the 1-dimensional curve in Fig. 1.
Following this line of reasoning, we construct a spatial pooling
model that we dub spatial VQPooling [32] (VQ = Video
Quality). It determines the increasing region of the saturating
curve that maps the worse quality scores, then emphasizes
them when determining the overall video quality score. Later
we also introduce temporal and motion-based aspects of the
VQPooling approach.

We also observe that the distribution of local spatio-
temporal quality scores are affected by the presence or absence
of large, cohesive motion fields such as egomotion in a video

frame and incorporate this effect into our pooling strategy.
Ego-motion refers to the presence of optical flow or motion
fields induced by camera motion. Egomotion induces cohesive,
often large velocity fields in videos that may mask local
distortions [9], [39], [40], making them less visible. This
is powerfully demonstrated by the “silencing” effect demon-
strated in [40], where local image changes of highly diverse
types (size, shape, flicker, hue) are “silenced” or masked by
larger collective movements. Likewise, quality scores may be
affected by such velocity fields by modifying their sensitivity
to local spatial or temporal distortions. Any sufficiently large
cohesive motion field may produce similar effects. We use
different criteria to extract perceptually significant low quality
regions of the video for frames containing large, coherent
motion fields to account for these effects. Details are described
in Section III-B.

Along the temporal domain, frame level quality scores are
divided into two groups of higher and lower quality using
a clustering algorithm. Perceptually influential worse quality
scores are emphasized in the overall quality index. Moreover,
we found that the magnitude of the difference between the
qualities in the higher and lower quality groups affects the
impression of overall quality. The quality scores of the higher
group are adaptively weighted using the difference of the
scores between the higher and lower quality groups in a
temporal pooling model that we name temporal VQPooling
[32]. Details are described in Section III-C.

III. CONTENT ADAPTIVE SPATIAL AND

TEMPORAL POOLING

A. Egomotion Detection

To detect egomotion or similar large, cohesive motion fields
in a frame, we deploy a simple method that uses the first
and second-order statistics (means and standard deviations)
of the magnitudes of the computed motion vectors (MVs).
When there is no camera motion, local portions of frames
may contain diverse and disparate MVs, while “background”
regions have zero or small MVs. This results in the mean
magnitude of the MVs in the frame being very low, while
the standard deviation is relatively high. However, if there
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is camera motion or other large, collective motion, then
large percentages of MVs will be similar with high mean
displacement values, while the standard deviation of the MVs
becomes relatively small. MVs are computed in VQPooling
using a standard full search motion estimation algorithm on
16 × 16 macroblocks (MBs) [41]. The decision regarding the
presence of egomotion is made based on a simple predicate.
When the standard deviation of the MV’s is larger than the
mean, then no significant camera movement or other large,
collective motion is deemed present; otherwise egomotion or
similar large, cohesive motion field is deemed to be present.

B. Content Adaptive Spatial Pooling

One contribution of our work is that we describe a method
of extracting regions of highly influential poor quality in
an adaptive manner for each video frame. Our classification
of saturated and increasing regions of the curve takes into
account the distribution of the quality scores. We perform this
classification based on the slope of the quality score curve.

Let z denote an index into the set of sorted scores and let
Q f (z) denote the sorted spatially local quality scores obtained
using a VQA algorithm on a frame f . Note that the VQA
algorithm may operate using a single frame or a neighborhood
of frames to deliver the quality score Q f (z). Thus, Q f (z) is
the zth lowest quality score. The discrete derivative of Q f (z),
denoted Q′

f (z), estimates the slope of this curve:

Q′
f (z) ≈ Q̄ f (z + �) − Q̄ f (z)

�
· Ns (1)

where Ns is the number of quality scores in a frame and Q̄ =
Q f (z)−Q Min

f

Q Max
f

−Q Min
f

, where QMin
f and QMax

f are the minimum and

maximum scores in the f th frame, respectively. Thus 0 ≤
Q̄ f ≤ 1, regardless of the quality index used.

A slope criterion is used to classify quality scores into
increasing and saturated regions. Let t f be a threshold that
is determined based on the degree of estimated egomotion or
other collective motion in the frame. Let μv

f and σv
f denote

the mean and standard deviation of the magnitudes of MVs
of the f th frame respectively. The presence of egomotion,
or similar global motion, is decided using the coefficient of
variation (CoV) of the magnitude of the MVs. The CoV is
defined as the ratio of the standard deviation to the mean. A
frame is considered to be moving when the CoV is lower than
or equal to 1, which corresponds to the standard deviation of
the motion vectors being smaller than their mean value. This
simple threshold of 1 provides very good results for identifying
frames with egomotion. The slope threshold t f is determined
based on the presence or absence of ego-motion according to:

t f =
⎧
⎨

⎩

tM ,
σ v

f
μv

f
< 1

tS,
σ v

f
μv

f
≥ 1.

(2)

The constants tM and tS therefore become the slope criterion
for frames with and without egomotion, respectively. Since
frames without egomotion typically contain smaller regions
suffering from severe quality degradation, we fix tS > tM .

Further details on the choice of these parameters are provided
in Section IV. The larger slope criterion that is applied to
frames without large coherent motion better separates the
influential low quality scores in these frames.

The increasing region of the sorted quality score curve is
the set

Pt = {z : Q′
f (z) < t f } (3)

with complement

PC
t = {z : Q′ f (z) ≥ t f } (4)

which is the quality saturation region of the sorted quality
score curve.

A frame level quality index s f for frame f is then
computed:

s f =
∑

z∈Pt
Q f (z)+r · ∑

z∈Pct
Q f (z)

|Pt | + r · |Pc
t | (5)

where |Pt | denotes the cardinality of Pt , and r � 1 is a small
multiplier that is used to account for the reduced perceptual
contribution of the scores in Pc

t to the overall quality of the
video.

C. Content Adaptive Temporal Pooling

The spatial pooling strategy described in Section III-B
produces frame level quality indices s f that are determined in
a content adaptive manner. We now perform content adaptive
temporal pooling to aggregate these frame level quality indices
into an overall quality index for the entire video.

To perform temporal pooling, the quality scores of all
frames are classified into two groups composed of lower
and higher quality using k-means clustering [42] along the
temporal dimension with k = 2. Let GL and GH represent
the sets of frame indices of the lower and higher quality
groups, respectively. Fig. 4 illustrates the resulting clusters for
a number of different video sequences. In the right column of
Figure 4, green crosses correspond to frame indices in GH ,
while red dots correspond to frame indices in GL . The scores
from the two regions are then combined to obtain an overall
quality prediction for the entire video sequence:

S =
∑

f ∈GL
s f +w · ∑ f ∈GH

s f

|GL | + w · |GH | (6)

where |GL | and |G H | denote the cardinality of GL and G H ,
respectively. The weight w is computed as a function of the
ratio between the scores in GL and GH and is applied to the
scores in the less influential higher quality region:

w =
(

1 − ML

MH

)2

(7)

where MH and ML are the mean quality scores of GH and
GL, respectively. We found that while the higher quality
temporal regions of the video are perceptually less influential,
they cannot be completely ignored. As the difference between
quality in the higher and lower quality regions increases, the
influence of the higher quality regions of the video on overall
quality also increases which is reflected in the definition
of w. Note that when the video quality is fairly uniform and
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Fig. 4. Example illustrating the proposed temporal pooling method using test
sequences from the LIVE Video Quality database. (a) SSIM scores computed
per frame using our proposed spatial pooling method, where the x-axis denotes
frame numbers. (b) Scores divided into higher and lower quality groups where
crosses and dots correspond to quality scores from the higher and lower quality
groups, respectively.

ML = MH , w = 0 and overall quality is determined by the
lower quality frames of the video. As the difference between
MH and ML increases, w increases and assigns higher weights
to the higher quality regions of the video in determining overall
video quality.

IV. PERFORMANCE

We evaluated the performance of VQPooling on the LIVE
Video Quality Database and on the EPFL-PoliMI database
using the MSE, SSIM and MOVIE algorithms as inputs to
the VQPooling method [29], [43]. We used two databases to
remove any biases in analysis or interpretation that might be
incurred by only using content from one database [13].

The LIVE Video Quality Database includes 10 original
reference videos and 150 distorted videos. All of the test
sequences in the LIVE database are progressively scanned
and have a resolution of 768×432 pixels. 15 test sequences
were created from each of the reference sequences using

four different distortion processes: MPEG-2 compression,
H.264/AVC compression, and simulated transmission of
H.264/AVC compressed bitstreams through error-prone IP
networks and wireless networks. Among the 15 kinds of test
sequences, four MPEG-2 compressed videos are encoded by
the MPEG-2 reference software available from the Interna-
tional Organization for Standardization (ISO) with the com-
pression rates varied from 700 kbps to 4Mbps [44]. Four
H.264/AVC compressed videos are encoded by the JM ref-
erence software (Version 12.3) made available by the Joint
Video Team (JVT) [45]. Three IP network error patterns were
supplied by the Video Coding Experts Group (VCEG) [46],
with loss rates of 3%, 5%, 10% and 20% and compression
rates between 0.5-7 Mbps. Four wireless network error patterns
were simulated by the software available from the VCEG [47],
with packet error rates varied between 0.5-10% and compres-
sion rates varied between 0.5-7 Mbps. The test sequences and
difference mean opinion scores (DMOS) are available in [29].
The authors of [43] provide related information, subjective
VQA results on the LIVE Database and a comparison of
several state-of-the-art VQA methods.

The EPFL-PoliMI database include 12 original reference
sequences, half of which are 4CIF resolution (704×576 pixels)
and the remaining are CIF resolution (352 × 288 pixels)
[30]–[49]. All of the reference videos are encoded with the
H.264/AVC reference software (Version 14.2) resulting in 12
packet loss free H.264/AVC coded bitstreams. For each of the
coded 12 bitstreams, channel distortion patterns were gener-
ated at 6 different packet loss rates (PLR) (0.1%, 0.4%, 1%,
3%, 5%, 10%) and two channel realizations were selected for
each PLR, resulting in 144 channel distorted bit streams. The
test sequences and mean opinion scores (MOS) are available
in [30]. We used the MOS scores provided from the subjective
studies conducted at EPFL to report all the results in this paper.

We applied VQPooling to quality maps obtained from MSE,
the SSIM index [4] and the MOVIE index [6] on the LIVE
Video Quality Database. MSE is still commonly used, despite
its well known perceptual shortcomings. SSIM is a popular
still image QA algorithm which can be applied frame-by-frame
on video. MOVIE is a state-of-the-art perception-driven VQA
algorithm that operates in the spatio-temporal domain. These
algorithms represent diverse approaches to VQA. However,
VQPooling can be applied to the responses of any VQA
algorithm that can produce local spatio-temporal estimates of
video quality.

To obtain quality maps of MSE and SSIM, we utilized
a sampling window of 16 × 16 that slides in increments
of 4 pixels to make each measurement. In other words,
MSE and SSIM are evaluated at every 4th pixel along each
dimension. In the case of MSE, the final overall quality index
computed using different pooling methods is converted to peak
signal-to-noise ratio (PSNR). This makes the results presented
in Tables V and VI comparable to the results in Tables I
and II. The quality map of MOVIE is obtained using the
released software implementation of MOVIE [6]. There are
three different versions of the MOVIE index : spatial MOVIE
(SMOVIE), temporal MOVIE (TMOVIE) and MOVIE. The
SMOVIE and TMOVIE primarily capture spatial and temporal
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TABLE I

SROCC RESULTS ON THE LIVE VIDEO QUALITY DATABASE.

(W: WIRELESS. I: IP. H: H.264/AVC. M: MPEG2)

VQA W I H M All

VSNR 0.7019 0.6894 0.6460 0.5915 0.6755

VQM 0.7214 0.6383 0.6520 0.7810 0.7026

PSNR 0.6574 0.4166 0.4585 0.3862 0.5397

MeanSSIM 0.5233 0.4550 0.6514 0.5545 0.5257

MOVIE 0.8019 0.7157 0.7664 0.7733 0.7890

MSE (Percentile) 0.6720 0.5715 0.5488 0.4423 0.5908

SSIM (Percentile) 0.7696 0.7428 0.7032 0.6632 0.7659

MOVIE (Percentile) 0.7992 0.7121 0.7386 0.7654 0.7650

MSE (VQPooling) 0.6958 0.5786 0.5977 0.5331 0.6470

SSIM (VQPooling) 0.8339 0.7770 0.8088 0.8275 0.8369

MOVIE (VQPooling) 0.8026 0.8060 0.8309 0.8504 0.8427

TABLE II

LCC RESULTS ON THE LIVE VIDEO QUALITY DATABASE.

(W: WIRELESS. I: IP. H: H.264/AVC. M: MPEG2)

VQA W I H M All

VSNR 0.6992 0.7341 0.6216 0.5980 0.6896

VQM 0.7324 0.6480 0.6459 0.7860 0.7236

PSNR 0.6689 0.4645 0.5492 0.3891 0.5621

MeanSSIM 0.5401 0.5119 0.6656 0.5491 0.5444

MOVIE 0.8386 0.7622 0.7902 0.7595 0.8116

MSE (Percentile) 0.7191 0.5778 0.5780 0.4763 0.6198

SSIM (Percentile) 0.7954 0.7905 0.7339 0.6711 0.7829

MOVIE (Percentile) 0.8174 0.7631 0.7479 0.7702 0.7946

MSE (VQPooling) 0.7044 0.5383 0.6325 0.5174 0.6551

SSIM (VQPooling) 0.8526 0.8170 0.8234 0.8181 0.8511

MOVIE (VQPooling) 0.8502 0.8015 0.8444 0.8453 0.8611

distortions in the video respectively. The overall MOVIE index
is defined as the product of SMOVIE and TMOVIE.

Figure 5 shows the Linear Correlation Coefficient (LCC)
results of VQPooling using the LIVE database as a function
of tS on MSE, SSIM and MOVIE quality maps with tM = 1
and as tS ranges from 1 to 10 in unit increments. It can be
seen that the performance of VQPooling is not very sensitive
to the value of tS for this range of values. As described in
Section III-B, we chose tS such that tM < tS with tM = 1
and tS = 3. All parameters described here were identical for
the results that we present on both the LIVE Video Quality
Database and EPFL-PoliMI databases for all three VQA
algorithms: MSE, SSIM and MOVIE.

We compare VQPooling to both mean based pooling and
the percentile pooling proposed in [24]. For mean based
pooling, the local spatio-temporal quality scores were pooled
using the mean along both spatial and temporal dimensions.
For PSNR, we computed the mean of the MSE values in
the spatial and temporal dimensions before converting the
overall MSE into PSNR. For percentile pooling, the scale
factor r in Equation (5) weighting the lowest p = 5% was
not found to influence the results significantly and we hence
choose r = 0.

VQpooling on MSE
VQpooling on SSMI
VQpooling on MOVEI

1 2 3 4 5 6 7 8 9 10
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Fig. 5. LCC results of VQPooling on MSE, SSIM, and MOVIE maps as a
function of tS on the LIVE Video Quality database with tM = 1.

TABLE III

SROCC RESULTS ON EPFL-POLIMI DATABASE

VQA SROCC VQA SROCC
VSNR 0.8958 MSE (Percentile) 0.8808
VQM 0.8375 SSIM (Percentile) 0.9262
MSE 0.7983 MOVIE (Percentile) 0.9078

MeanSSIM 0.8357 MSE (VQPooling) 0.8821
MOVIE 0.9203 SSIM (VQPooling) 0.9471

MOVIE (VQPooling) 0.9335

TABLE IV

LCC RESULTS ON EPFL-POLIMI DATABASE

VQA LCC VQA LCC
VSNR 0.8955 MSE (Percentile) 0.8834
VQM 0.8433 SSIM (Percentile) 0.9265
MSE 0.7951 MOVIE (Percentile) 0.9184

MeanSSIM 0.8341 MSE (VQPooling) 0.850
MOVIE 0.9302 SSIM (VQPooling) 0.9543

MOVIE (VQPooling) 0.9422

Figure 6 shows scatter plots of subjective scores and the
VQPooling scores obtained using MSE, SSIM and MOVIE
maps on the LIVE and EPFL-PoliMI databases. The dotted
line in Fig. 6 is the best fitting logistic function of the objective
scores to the subjective data. We used the logistic function
specified in [50]:

S′
j = b2 + b1 − b2

1 + e−(S j−b3/b4)
(8)

where Sj is the quality score of the j th video sequence and the
fitting parameters (b1, b2, b3, b4) are obtained by minimizing
the least square error between the DMOS values and the fitted
scores, S′

j .
Spearman Rank Order Correlation coefficient (SROCC) and

Pearson LCC were used as measures to evaluate the per-
formance of VQPooling. SROCC measures the monotonicity
of objective quality scores with respect to subjective quality
scores, while the LCC measures the linear accuracy of the
objective quality scores. SROCC and the LCC of VQPooling
relative to human subjective judgments are compared against
the performance of several VQA algorithms in Table I–IV.
The results show that the performance of VQPooling is highly
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Fig. 6. Scatter plots of VQPooling scores versus DMOS values and VQPooling scores versus MOS values for all videos in the LIVE Video Quality database
and the EPFL-PoLIMI database, respectively. (a) VQPooling on MSE map of LIVE database. (b) VQPooling on SSIM quality map of LIVE database.
(c) VQPooling on MOVIE quality map of LIVE database. (d) VQPooling on MSE map of EPFL-PoliMI database. (e) VQPooling on SSIM quality map of
EPFL-PoliMI database. (f) VQPooling on MOVIE quality map of EPFL-PoliMI database.

TABLE V

SROCC RESULTS FOR DIFFERENT POOLING STRATEGIES ON THE LIVE

VIDEO QUALITY DATABASE. SCHEME A: SPATIAL MEAN AND TEMPORAL

VQPOOLING. SCHEME B: SPATIAL VQPOOLING AND TEMPORAL MEAN.

SCHEME C: SPATIAL AND TEMPORAL VQPOOLING

Quality Map Scheme A Scheme B Scheme C

MSE 0.5642 0.6103 0.6470

SSIM 0.6011 0.7884 0.8369

MOVIE 0.6137 0.7726 0.8427

competitive for all distortion types. In addition, VQPooling
improves the performance of all three quality indices (MSE,
SSIM and MOVIE indices). The performance of VQPooling
improves relative to fixed percentile pooling for all algorithms
as well, showing that pooling in a content adaptive manner can
improve the performance of objective VQA algorithms against
human quality judgments. We also show the contribution of
Spatial and Temporal VQPooling separately using the LIVE
Video Quality Database in Tables V and VI.

In Tables VII and VIII, we also conducted tests for statistical
significance of the results of the different pooling methods
(mean, percentile, VQPooling) against each other on the LIVE
Video Quality Database and the EPFL-PoliMI databases. A
symbol value of “1” indicates that the statistical performance
of the VQA model in the row is superior to that of the
model in the column. A symbol value of “0” indicates that

TABLE VI

LCC RESULTS FOR DIFFERENT POOLING STRATEGIES ON THE LIVE

VIDEO QUALITY DATABASE. SCHEME A: SPATIAL MEAN AND TEMPORAL

VQPOOLING. SCHEME B: SPATIAL VQPOOLING AND TEMPORAL MEAN.

SCHEME C: SPATIAL AND TEMPORAL VQPOOLING

Quality Map Scheme A Scheme B Scheme C

MSE 0.5902 0.6351 0.6551

SSIM 0.6108 0.8198 0.8511

MOVIE 0.6231 0.8023 0.8611

the statistical performance of the model in the row is inferior
to that of the model in the column and “-” indicates that the
statistical performance of the model in the row is equivalent
to that of the model in the column. On the LIVE Video
Quality Database, the SSIM index showed the most consistent
improvement while MSE showed no improvement that was
significant, perhaps another reason not to use MSE for VQA.
The MOVIE index also showed significant improvement using
VQPooling as compared to mean based and percentile pooling,
which is remarkable given the already high performance of the
index and its use of advanced temporal perceptual models.
VQPooling improved the performance of all methods on the
EPFL PoliMI database, but the improvement over percentile
pooling was not found to be statistically significant.

Finally, we briefly discuss the computational complexity
of VQPooling. Our un-optimized implementation of the
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TABLE VII

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN

MODEL PREDICTIONS AND DMOS VALUES OF THE LIVE VIDEO

QUALITY DATABASE FOR THE DIFFERENT POOLING STRATEGIES

CONSIDERED (MEAN BASED POOLING, PERCENTILE POOLING, AND

VQPOOLING RESPECTIVELY). M1–M3 CORRESPOND TO MEAN BASED

POOLING, PERCENTILE POOLING AND VQPOOLING RESPECTIVELY.

EACH ENTRY IN THE TABLE IS A CODEWORD CONSISTING OF 5

SYMBOLS. THE SYMBOLS CORRESPOND TO THE “WIRELESS,” “IP,”

“H.264/AVC,” “MPEG-2,” AND “ALL DATA” DISTORTION CATEGORIES

IN THE LIVE VIDEO QUALITY DATABASE IN THAT ORDER

M1 M2 M3

M1 - - - - - - - - - - - - - - -

M2 - - - - - - - - - - - - - - -

M3 - - - - - - - - - - - - - - -

(a) PSNR

M1 M2 M3

M1 - - - - - 0 0 - - 0 0 0 0 0 0

M2 1 1 - - 1 - - - - - - - - - 0

M3 1 1 1 1 1 - - - - 1 - - - - -

(b) SSIM

M1 M2 M3

M1 - - - - - - - - - - - - - - 0

M2 - - - - - - - - - - - - - - 0

M3 - - - - 1 - - - - 1 - - - - -

(c) MOVIE

TABLE VIII

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN

MODEL PREDICTIONS AND MOS VALUES OF THE EPFL-POLIMI

DATABASE FOR THE DIFFERENT VQA ALGORITHMS. L1–L9

CORRESPOND TO PSNR, MEAN SSIM, MOVIE, MSE (PERCENTILE),

SSIM (PERCENTILE), MOVIE (PERCENTILE), MSE (VQPOOLING),

SSIM (VQPOOLING), AND MOVIE (VQPOOLING), RESPECTIVELY

L1 L2 L3 L4 L5 L6 L7 L8 L9

L1 - - 0 0 0 0 0 0 0

L2 - - 0 0 0 0 0 0 0

L3 1 1 - 1 - - 1 - -

L4 1 1 0 - 0 0 - 0 0

L5 1 1 - 1 - - 1 - -

L6 1 1 - 1 - - 1 0 -
L7 1 1 0 - 0 0 - 0 0

L8 1 1 - 1 - 1 1 - -

L9 1 1 - 1 - - 1 - -

VQPooling algorithm, running on Matlab on a 3 GHz proces-
sor with 4 GB RAM running Windows 7, executes in about
50 seconds on the videos in the LIVE Video Quality Data-
base (768 × 432 pixels, 25 fps, 10 second clips). The spa-
tial VQPooling algorithm involve sorting the quality scores
which takes 2 seconds and the temporal VQPooling algorithm
involves a clustering step which takes 0.4 sec. The main
computational burden is caused by estimation of the MV’s for
egomotion detection. We adopted the motion estimation algo-
rithm of a practical video codec [41] in our implementation
of VQPooling. Recent fast motion estimation implementations
that allow for realtime processing [51], [52] can help speed

up VQPooling. Further, if the VQA algorithm already utilizes
motion information (for example, MOVIE), these can be re-
used resulting in no additional computational cost associated
with MV estimation.

V. CONCLUSION

We proposed a content adaptive pooling strategy that
emphasizes perceptually annoying poor quality regions in a
video when predicting overall video quality. This pooling
strategy is based on the observed distributions of spatio-
temporally local quality scores when videos are distorted
by compression or lossy transmission over a communication
network. We extract influential quality scores in a content
adaptive manner by studying their rank-order distribution,
emphasizing annoying high distortion scores to produce a
final quality score. We also studied the effects of large,
egomotion-like image flow on the perception of quality and
used a modified criterion to extract perceptually influential low
quality regions based on the presence of such large, cohesive
motion fields.

We tested our proposed VQPooling algorithm on quality
maps obtained using MSE, SSIM and the MOVIE indices on
the LIVE VQA Database and the EPFL-PoliMI Video Quality
database [29], [30]. When VQPooling is applied to quality
indices such as MSE, SSIM and MOVIE, consistent improve-
ment in performance was observed across all distortion types
and on both databases as compared to conventional pooling
methods such as mean based or percentile pooling. We found
that the adaptive extraction of perceptually influential low
quality scores based on the distribution of scores improves
the performance of mainstream competitive objective VQA
algorithms.

The focus of our work has been based on distortions arising
from compression and transmission over lossy communication
channels which is typical in most video communication appli-
cations such as streaming video, Video on Demand, video
teleconferencing and so on. Our validation of the proposed
method on different databases and using different algorithms
demonstrates the general applicability of this method for
videos arising from such distortion sources. Further, the tem-
poral pooling in our work has focused on analyzing short
duration video segments and does not consider effects such as
recency, which shows that the most recently seen part of the
sequence has a heavier influence on overall perceived quality
[14]. Our work also does not attempt to incorporate hysteresis
effects that have been observed in human studies of video
quality [17]. Study of these perceptual effects on temporal
video pooling and incorporating these into VQPooling is an
area of future research.
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